RES4Africa Foundation
Knowledge Platform
Wind technologies
Siemens Gamesa
The RES4Africa Knowledge Platform offers a set of content-driven, technical-functional training

The aim of the RES4Africa Knowledge Platform is to establish a public platform of technical training content, usable by third parties in accordance with the Foundation’s core principles of a think tank and open hub for knowledge sharing.

The purpose of the Platform is to offer a set of technical-functional content, organized in sharp modules covering renewable energy and more in general the key topics part of the energy transition.

The modules will be also delivered to on-request professionals of the energy sector (e.g., Energy Ministries, Regulatory Authority, vertically integrated incumbents, Associations, other relevant parties).
The Platform covers all the key areas of energy transition, with a comprehensive perspective across the value chain.

The Platform covers the following thematic areas:

Technologies: a comprehensive understanding of different technological options and features / potential is a pre-requisite for a successful planning and implementation of fully functioning energy systems.

Policies and regulations: must go hand in hand with measures ensuring that industrial and other economic capabilities are aligned with sustainable development and climate priorities.

Access to market: Successful deployment of RES and flexibility technologies depends on how effectively MWh produced can be sold on the market and to what extent risk is properly hedged.

Permitting: one of the key hurdles that developers face, especially for utility-scale RES projects. Key common issues can be identified, and proper management principles can be set up.

Financing: bankability is one of the highest impact factors to ensure that utility-scale RES projects are successfully deployed. Compliance with requirements from international funding entities is fundamental.

Operation: considering the level of maturity reached by RES technologies, a significant share of the value that can be extracted by RES projects stems from an advanced asset management approach.

Sustainability: is progressively becoming a top priority for investors and energy industry stakeholders in assessing investment opportunities. A more comprehensive evaluation approach must be adopted.
Wind power can play a decisive role for Africa’s energy transition

The Platform covers the following thematic areas:

- Technologies
- Policies and regulations
- Access to market
- Permitting
- Financing
- Operation
- Sustainability

Wind technologies are crucial enablers for sustainable growth

What is the context: Wind power stands out as an exceptionally clean and abundant source of renewable energy. Together with other renewables like solar power, it has the advantage of producing no harmful emissions or greenhouse gases. Additionally, wind technologies are highly effective in generating reliable and green electricity.

Why is this relevant: By evaluating the latest advancements and enhancements in wind energy technologies and systems, we can gauge the substantial advantages it offers and forecast its future direction.

What are the key questions:
- What are the basics of wind power?
- What have been the major developments and improvements?
- What are their implications?
- How can they support Africa’s green transition?
Company profile – Siemens Gamesa in Africa

Company Profile Summary

- **670 MW** under construction
- **3,102 MW** under maintenance
- **4,334 MW** of installed power
- **46.9%** market share

Key Figures

- **MOROCCO**: 1,346 MW installed, 570 MW under construction
- **EGYPT**: 1,501 MW installed
- **MAURITANIA**: 132 MW installed
- **MOROCCO**: 1,346 MW installed, 570 MW under construction
- **TUNISIA**: 242 MW installed
- **JORDAN**: 166 MW installed
- **ALGERIA**: 10 MW installed
- **TUNISIA**: 242 MW installed
- **MAURITIUS**: 9 MW installed
- **SOUTH AFRICA**: 855 MW installed
- **EGYPT**: 1,501 MW installed
- **DJIBOUTI**: 59 MW installed
- **KENYA**: 14 MW installed
- **DJIBOUTI**: 59 MW installed
- **ERITREA**: 100 MW under construction

Leaders in the continent with 4.3 GW installed

Figures as of CY2Q2022.
Introduction to energy basics: wind and meteorology

Source of the wind

- The wind is mainly due to the uneven solar radiation on the Earth surface. An air flow is generated by the temperature gradient between the cold poles and the hot equatorial area.

- At the equator, the air is heated at the ground level and rises until it is not buoyant. At this point it is forced to go poleward by the air below continuously rising.

- As it goes towards the poles, the air cools down and starts sinking towards the ground.

- Around 1-2% of solar radiation is converted into wind. The mean power density of solar radiation is approximately 1.4 kW/m².

- Therefore, the cross-section of Earth receiving solar radiation is around 10^{14} m². The wind power around Earth is huge! (1.4 * 10^8 GW)

Introduction to energy basics: wind and meteorology

Source of the wind

- The **Coriolis force** due to Earth rotation also creates a force on the air around the Earth. The **geostrophic** wind is the flow created by the equilibrium between the Coriolis force and the force due to the temperature gradient.

- Cells are created by a mechanism involving both the effect of the temperature gradient and the Coriolis force.

- This mechanism creates prevailing winds, i.e in a given region, winds will in average blow in a dominant direction.

Introduction to energy basics: wind and meteorology

Wind resource

- The local **wind resource** can be evaluated in terms of wind power density or mean wind speed.
- The **Global Wind Atlas database** provides a map of the onshore wind resource.
- It is based on a downscaling process. It starts with large-scale climate data and uses physical models to calculate the wind speed on a finer mesh, taking into account variables like the terrain topology.
- This figure shows the mean wind speed at a height of 100m.
- More information and data can be found at https://globalwindatlas.info/

Source: https://globalwindatlas.info/
Does Africa have a good wind resource? 1/3

IFC engaged Everoze & Vortex to answer this question:
1. Assessment of technical potential for entire continent using basic constraints
2. Identify short-list of countries for detailed assessment
3. Detailed analysis of target countries using deeper constraints

Everoze assumptions:
- Use high resolution wind data:
 - Global Wind Atlas: 250m x 250m resolution
 - Modern turbines matched to site conditions:
 - Hub height = 125 meters
 - Rotors = 120-to-158-meter diameter
 - Rated power = 4.3 to 5.3 MW
 - Apply basic constraints for technical and E&S:
 - Wind speed, elevation, slope, urban areas
 - High population density, protected areas
 - More detailed constraints will come later

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind resource quality</td>
<td>Exclude if wind speed < 6.0m/s at 150m Exclude if wind speed > 16.0m/s at 150m</td>
</tr>
<tr>
<td>Elevation</td>
<td>Exclude if elevation > 2,000m</td>
</tr>
<tr>
<td>Slopes</td>
<td>Exclude if slopes > 20%</td>
</tr>
<tr>
<td>Land use cover</td>
<td>Exclude urban areas and airports (2km)</td>
</tr>
<tr>
<td>Population density</td>
<td>Exclude if population density > 200 people/km²</td>
</tr>
<tr>
<td>Water bodies</td>
<td>Exclude</td>
</tr>
<tr>
<td>Protected areas</td>
<td>Exclude if UNESCO World Heritage site Exclude if IUCN Protected Area Management codes Ia, Ib and II.</td>
</tr>
</tbody>
</table>

Source: Exploring Africa’s untapped wind potential
Sean Whittaker, Principal Industry Specialist, IFC, October 5, 2020
Africa has great wind resources!

- Total wind potential = 180,000 TWh/yr = 250x current continental demand
- Two-thirds are locations with wind > 7.5 m/s
- One-third is in locations with wind > 8.5 m/s, yielding very high productivity
- 27 countries on their own could satisfy the entire continental electricity demand (17 of these have average capacity factors over 30%)
- Many countries with no projects have great potential:
 - Algeria: 24,980 TWh (34% in high wind)
 - Tanzania: 1,564 TWh potential (12% in high wind)
 - Malawi: 322 TWh potential (7% in high wind)
 - Namibia: 4,399 TWh (3% in high wind)
 - Nigeria, Cameroon, Mozambique, Ivory Coast …

Source: Exploring Africa’s untapped wind potential
Sean Whittaker, Principal Industry Specialist, IFC, October 5, 2020
Does Africa have a good wind resource? 3/3

- Technical potential: Only locations with wind > 8.5 m/s
- Total potential for high-wind only = 16,600 GW ⇒ 64,700TWh/year

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>P50 (TWh/annum)</th>
<th>Capacity (GW)</th>
<th>CF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sudan</td>
<td>11,705.8</td>
<td>3,294.4</td>
<td>40.5%</td>
</tr>
<tr>
<td>2</td>
<td>Mauritania</td>
<td>11,515.5</td>
<td>3,070.1</td>
<td>39.7%</td>
</tr>
<tr>
<td>3</td>
<td>Algeria</td>
<td>8,591.8</td>
<td>2,602.2</td>
<td>37.7%</td>
</tr>
<tr>
<td>4</td>
<td>Chad</td>
<td>7,470.8</td>
<td>1,994.7</td>
<td>42.7%</td>
</tr>
<tr>
<td>5</td>
<td>Libya</td>
<td>5,373.6</td>
<td>1,659.9</td>
<td>36.9%</td>
</tr>
<tr>
<td>6</td>
<td>Egypt</td>
<td>4,021.2</td>
<td>1,144.4</td>
<td>34.4%</td>
</tr>
<tr>
<td>7</td>
<td>Mali</td>
<td>3,543.0</td>
<td>1,173.6</td>
<td>35.5%</td>
</tr>
<tr>
<td>8</td>
<td>Niger</td>
<td>3,174.1</td>
<td>940.8</td>
<td>38.5%</td>
</tr>
<tr>
<td>9</td>
<td>Somalia</td>
<td>1,652.3</td>
<td>477.1</td>
<td>37.9%</td>
</tr>
<tr>
<td>10</td>
<td>Kenya</td>
<td>533.2</td>
<td>139.6</td>
<td>43.6%</td>
</tr>
<tr>
<td>11</td>
<td>Morocco</td>
<td>519.1</td>
<td>143.0</td>
<td>41.4%</td>
</tr>
<tr>
<td>12</td>
<td>Tunisia</td>
<td>503.0</td>
<td>150.8</td>
<td>38.1%</td>
</tr>
<tr>
<td>13</td>
<td>Ethiopia</td>
<td>355.2</td>
<td>107.4</td>
<td>37.7%</td>
</tr>
<tr>
<td>14</td>
<td>Somaliland</td>
<td>324.7</td>
<td>97.4</td>
<td>38.1%</td>
</tr>
<tr>
<td>15</td>
<td>Madagascar</td>
<td>320.3</td>
<td>91.2</td>
<td>40.0%</td>
</tr>
<tr>
<td>16</td>
<td>South Africa</td>
<td>246.9</td>
<td>75.1</td>
<td>37.5%</td>
</tr>
<tr>
<td>17</td>
<td>United Republic of Tanzania</td>
<td>184.7</td>
<td>55.9</td>
<td>37.7%</td>
</tr>
<tr>
<td>18</td>
<td>Eritrea</td>
<td>179.3</td>
<td>49.5</td>
<td>41.3%</td>
</tr>
<tr>
<td>19</td>
<td>Namibia</td>
<td>139.1</td>
<td>38.3</td>
<td>41.4%</td>
</tr>
<tr>
<td>20</td>
<td>Djibouti</td>
<td>97.0</td>
<td>26.0</td>
<td>42.5%</td>
</tr>
<tr>
<td>21</td>
<td>Malawi</td>
<td>21.3</td>
<td>6.8</td>
<td>35.7%</td>
</tr>
<tr>
<td>22</td>
<td>Nigeria</td>
<td>9.4</td>
<td>2.9</td>
<td>36.9%</td>
</tr>
<tr>
<td>23</td>
<td>Zambia</td>
<td>7.7</td>
<td>2.5</td>
<td>35.3%</td>
</tr>
<tr>
<td>24</td>
<td>Mozambique</td>
<td>7.2</td>
<td>2.2</td>
<td>37.4%</td>
</tr>
<tr>
<td>25</td>
<td>South Sudan</td>
<td>3.5</td>
<td>1.1</td>
<td>37.5%</td>
</tr>
<tr>
<td>26</td>
<td>Botswana</td>
<td>1.9</td>
<td>0.6</td>
<td>33.4%</td>
</tr>
<tr>
<td>27</td>
<td>Zimbabwe</td>
<td>1.9</td>
<td>0.6</td>
<td>36.0%</td>
</tr>
<tr>
<td>28</td>
<td>Democratic Republic of the Congo</td>
<td>0.6</td>
<td>0.2</td>
<td>35.6%</td>
</tr>
<tr>
<td>29</td>
<td>Ghana</td>
<td>0.6</td>
<td>0.2</td>
<td>36.3%</td>
</tr>
<tr>
<td>30</td>
<td>Cameroon</td>
<td>0.6</td>
<td>0.2</td>
<td>36.9%</td>
</tr>
</tbody>
</table>

Source: Exploring Africa’s untapped wind potential
Sean Whittaker, Principal Industry Specialist, IFC, October 5, 2020
Wind measurement

- For siting processes and turbine development, a characterization of the wind at a specific location can be needed.

- Data on the winds needs to be collected in order to assess the wind resource to select a site, or to be fed to a numerical simulation code. It includes: wind direction, wind velocity, wind shear, temperature, pressure, humidity.

- A usual way to collect data is to use a so-called ‘met mast’ (or measurement tower). A met mast is equipped with instruments and sensors to measure wind characteristics.

- A met mast is usually equipped with anemometers (speed measurement) and wind vanes (direction measurement) at several vertical locations.

- This data can be used to calculate wind veer (direction gradient over height) or shear, and for example to fit a power law to model wind shear.

- It is also usually equipped with thermometers and pressure sensors.
Siting

- During the siting process, wind data collected by measurement instruments is post-processed to get valuable information.
- A **probability distribution of the wind speed** can be calculated from the data collected by the anemometers.
- In practice the wind speeds are distributed around a mean value. The **Weibull function** is well adapted to fit this distribution.

\[
f(v) = \frac{k}{A} \left(\frac{v}{A} \right)^{k-1} \exp \left(-\left(\frac{v}{A} \right)^k \right)
\]

- The k parameter is related to the shape of the distribution. A low value will fit with asymmetric distribution, while a higher value will be adapted for symmetric ones.
- The A parameter is closely related to the mean wind speed.
Wind turbine features
Overview of a wind turbine

- Let’s start with some vocabulary...

- The **nacelle** is the part containing the main systems of the machine. It is mounted on the **tower**, which is fixed to the ground by the **foundation**.

- The **blades** extract the wind energy. They are connected to the nacelle by the **hub**. The hub+blades assembly is called ‘**rotor**’.

- The acronym ‘RNA’ is often used to refer to the ‘**Rotor-Nacelle Assembly**’.

A wind turbine **extracts energy from the incoming wind** through its blades to make its rotor rotate. The rotation motion is transferred to a generator that converts the mechanical energy into electricity.

Source: Siemens Gamesa Renewable Energy
Wind turbine features
Inside the nacelle

- The blade power is transmitted to the generator through the hub, 2 shafts and a gearbox.

- The low-speed shaft connects the hub to the gearbox input. The high-speed shaft connects the gearbox output to the generator.

- The gearbox transforms the high torque and low rotation speed of the rotor (~10 rpm) for the generator (low torque and high rotation speed ~1000 rpm).

- Large bearings help the shafts to transmit power smoothly.

- The electric power produced by the generator is transmitted to a transformer (not shown) then down the tower through power lines.
Wind turbine features
Inside the nacelle

- The **blade pitch system** allows for the blade to rotate around its axis.
- The **nacelle yaw system** allows for the whole RNA to rotate around the tower axis.
- A **hydraulic unit** (not shown) makes oil circulate through systems that require it (gearbox, etc.).
- A **cooling unit** (not shown) evacuates heat produced by the generator outside.
- Hundreds of **sensors** inside and outside the nacelle constantly monitor the turbine state. It includes different types of sensor (accelerometers, thermometers, **anemometers**, strain gauges, rpm sensors, etc.).
- A complex **control system** (not shown) processes the sensor signals to control different turbine components.
Wind turbine features
Turbine design targets

- The design of a wind turbine is driven by 3 main factors:
 - **Performance**
 - The turbine should produce an AEP as high as possible
 - It should be designed to extract as much power as possible from the wind below the wind speed
 - ** Loads**
 - The turbine should resist to the fatigue and extreme loads
 - Especially around and above rated wind speed
 - ** Stability**
 - The turbine should not vibrate because of mode resonance and aero-elastic instabilities

→ The turbine controller is a key component to reach those targets
Wind technology evolution
Evolution of wind turbines

- Starting in the 90s, wind turbines have been industrialized, with a power output of the order of magnitude of 100 kW.

- To increase turbine competitiveness, rotor size and power output have rapidly increased during the last decades.

- Today, usual onshore turbines have a power output between 4-7 MW for a rotor diameter between 130-180 m.

- Larger and larger turbines are developed for the offshore market, with a power output up to 14 MW for a blade length above 100 m.

Source: ABB Technical Papers No. 13
Wind technology evolution

Evolution of wind turbines: Siemens Gamesa expertise

By increasing the swept area, turbine annual production is maximized, reducing the cost of the energy generated.
Wind technology trends
Recyclability: RecyclableBlade, a pioneering blade solution that enables blade materials to be recovered and recycled

INDUSTRIALIZED SETUP FOR THE RECYCLABLE BLADE PRODUCTION

Key milestones

- Early 2021: First full-scale recyclable blades production
- 2022: Offshore blades
- 2023: Onshore blades
- Production capacity continuously increasing until fully ready for bigger projects in 2024
Wind technology trends
Same means same product quality, strength, warranties and service process

The RecyclableBlade utilizes the same design criteria as before (IntegralBlade or Butterfly). Only change: recyclable resin.

The recyclable resin is structurally comparable to current resin systems, with the added benefit that it has the ability to be dissolved again after decommissioning.

Using the RecyclableBlade in a wind power plant is no different from any other SGRE blade. Same blade design with same maintenance criteria and warranties.
Wind technology trends
RecyclableBlade process

<table>
<thead>
<tr>
<th>Decommission</th>
<th>Immerse in mild acidic solution</th>
<th>Reclaim separated components</th>
<th>Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassemble and transport</td>
<td>Resin dissolves in mild acidic solution at elevated temperature after a few hours</td>
<td>Filter and coagulate resin + rinse and dry glass fiber etc</td>
<td>Glass fiber, resin, wood and metal can now be reused</td>
</tr>
</tbody>
</table>

A simple and fast pioneering process
Load adaptations

Real-time load management

<table>
<thead>
<tr>
<th>Load management</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Avoid turbine overloading and excessive fatigue.</td>
</tr>
<tr>
<td>• Provides different load-mitigating control actions.</td>
</tr>
</tbody>
</table>

Energy production

| Limit turbine complete shut-downs to prevent overloading. |
| Control actions are prioritized such that the least production costly action is applied first. |

Description

Traditional Sector Management

- Predefined load regulation based on past observations
- Shut-down of the turbine in critical sectors
- Significant energy losses possible

What is the effect?

- **Turbulence exceeding limit** in one sector and consequent predefined **shut-down**

Adaptive Control Strategy

Description

- Real time monitoring of main turbine loads
- Several load reduction handles:
 - Switch the optimum pitch settings
 - Reduce speed and power references
 - Increase the sideways damping
- Limited production losses

What is the effect?

- **Turbine maintained in operation** with minimal reduced energy output